

AUTOMATION OF JOB TASKS AND POLARIZATION

Analysis of changes in the occupational structure of the Dutch labour market

AGENDA

 Part 1: Collection of automation risk indicators (Technequality – Work Package 1)

- **Part 2:** Application of automation risk indicators to the Dutch context
 - RQ: How are changes in the occupational composition of the Dutch labour related to the automation risk of occupational tasks?

PART 1: COLLECTION OF AUTOMATION RISK INDICATORS

Technequality-Work Package 1

MOTIVATION – TECHNEQUALITY AUTOMATION RISK INDICATORS

- Goal is to contribute to prior automation risk assessments:
 - Frey & Osborne (2017)
 - Nedelkoska & Quintini (2018)
- Prior estimates rely on experts' assessment of tasks that are (still) difficult to automate, i.e. engineering bottlenecks
- Our contribution:
 - Account for factors affecting the actual adoption of technologies (e.g. price and access to technology, legislation, availability of training data, managerial practices and culture)
 - Account for the fact that technology potential might have improved

DATA COLLECTION PROCEDURE – TECHNEQUALITY AUTOMATION RISK INDICATORS

- What: gather country-specific automation risk assessments
 for 2-digit ISCO occupations via an expert questionnaire
- **Experts:** company directors (33.6%), managers (28.3%), HR professionals (5.1%)
- 8 countries: CZ, DE, GB, ES, FR, NO, EE, NL
- Survey dissemination: Kantar Public → via local business panels
- **Data collection:** via the Internet, approach of respondents differed across local panels
- Number of respondent: 894 experts (964 started the questionnaire) provided 2,328 assessments

QUESTIONNAIRE DESIGN – TECHNEQUALITY AUTOMATION RISK INDICATORS

- Respondents selected one or more (4-digit ISCO) occupations for which they felt able to assess how automation will affect the task content
- A stepwise approach guided respondents in their selection
 - 1. Select major group (9 groups)
 - 2. Select sub-major group (40 groups)
 - 3. Select unit groups (433 groups)

NA-!	CL
Sub-major group	Unit group
21 Science and Engineering Professionals	2211 General Medical Practitioners
22 Health Professionals	→ 2212 Specialist Medical Practitioner
23 Teaching Professionals	2221 Nursing Professionals
24 Business and Administration Professionals	2222 Midwifery Professionals
25 Information and Communications Technology Professionals	2230 Traditional and Complementary Medicine Professionals
26 Legal, Social, and Cultural Professionals	2240 Paramedical Practitioners
	2269 Health Professionals Not Elsewhere classified
9 Elementary Occupations	
10 I do not want to provide my opinion	

QUESTIONNAIRE DESIGN – TECHNEQUALITY AUTOMATION RISK INDICATORS

"Based on the most recent technological developments (e.g. in the fields of robotics, computerization, machine learning), could you indicate how much time **(workers will: not perform this task any longer, spend less time on this task, the same amount of time on this task, spend more time on this task, I don't know)** workers will spend on the following tasks for the occupation of [selection occupation] in the next five years?

Please take into account factors that influence the actual adoption of technologies when providing your answer (i.e. the price of technologies; the design of the organisation, production processes and supply chains; legal constraints; and cultural expectations."

Examples of tasks associates with specialist medical practitioner:

- a) conducting physical examinations of patients and interviewing them and their families to determine their health status;
- b) considering medical information provided by a referring doctor or other health provider

DESCRIPTIVE FINDINGS – TECHNEQUALITY AUTOMATION RISK INDICATORS

Top 3 occupations in which workers will spend less time on tasks

DESCRIPTIVE FINDINGS – TECHNEQUALITY AUTOMATION RISK INDICATORS

DATA QUALITY CHECKS – TECHNEQUALITY AUTOMATION RISK INDICATORS

- Respondents were asked to what extent they agree with the following statements (totally agree, tend to agree, tend to disagree, totally disagree, don't know)
 → the answers are correlated with the share of tasks on which workers will spend less time
- "Due to the use of robots and artificial intelligence, more jobs will disappear than new jobs will be created" (ρ=-0.004;p=0.503)
- "Robots are necessary as they can do jobs that are too hard or too dangerous for people"(ρ=0.013;p=0.550)

DATA QUALITY CHECKS – TECHNEQUALITY AUTOMATION RISK INDICATORS

DATA QUALITY CHECKS– TECHNEQUALITY AUTOMATION RISK INDICATORS

DATA QUALITY CHECKS– TECHNEQUALITY AUTOMATION RISK INDICATORS

PART 2: APPLICATION OF AUTOMATION RISK INDICATORS TO THE DUTCH CONTEXT

Automation risk and changes in the occupational composition

APPLICATION OF AUTOMATION RISK INDICATORS

The development of employment by automation risk of occupations

APPLICATION OF AUTOMATION RISK INDICATORS

Change in employment shares of occupations between the years 1996 and 2020, and routine task intensity of occupations, by their corresponding wage level in 2009

THANK YOU

Melline Somers

Melline.somers@maastrichtuniversity.nl