Technequality

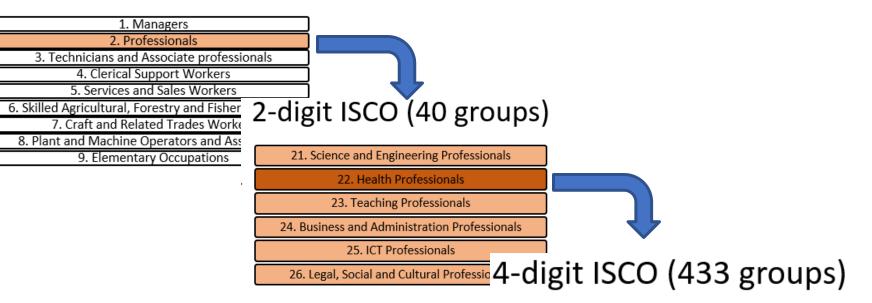
Understanding the relation between technological innovations and social inequality

Maastricht University School of Business and Economics

Database automation risks (D1.1) - Fieldwork

- Estimates of automation risks heavily rely on engineering bottlenecks and automatability of tasks (e.g., Frey & Osborne, 2017; Nedelkoska & Quintini, 2018).
- Our approach:
 - Ask 'experts'
 - Account for factors that influence the actual adoption of technologies
 - Assess increasing importance of tasks
- October 2019 → questionnaire to gather country-specific automation risk assessments for ISCO occupations

Experts: firm owners (34%), managers (28%) HR professionals (5%), other (33%)


- Online survey by Kantar Public:
 - 8 Countries (CZ, DE, GB, ES, FR, NO, EE, NL)
 - Panel of professionals in commercial and non-profit sector in decision-making positions
 - All sectors and company sizes
 - Minimum target by country: 100
 - Total: 2,328 assessments provided by 868 'experts'

Database automation risks - Survey Design

1-digit ISCO (9 groups)

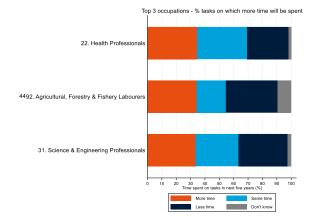
2211. General Medical Practitioners

2212. Specialist Medical Practitioners

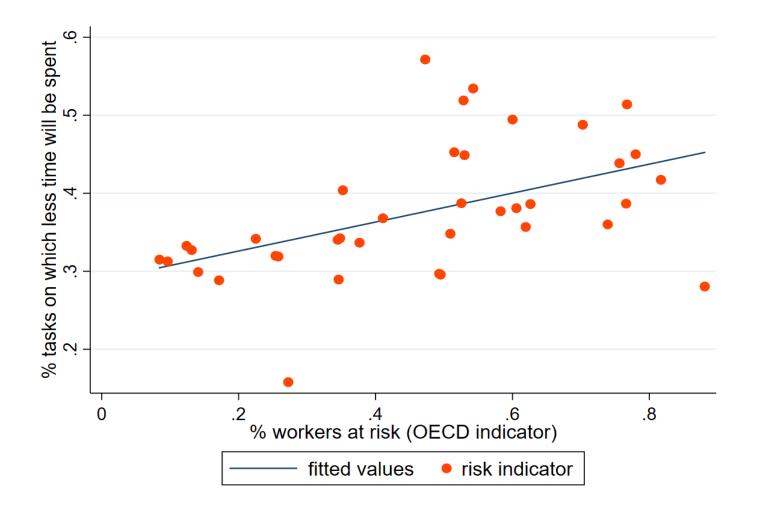
2221. Nursing Professionals

....

2269. Health Professionals Not Elsewhere Classified


Database automation risks - Survey Design

Based on the most recent technological developments (e.g., in the fields of robotics, computerization, machine learning), could you indicate how much time workers will spend on the following tasks for the occupation of **Specialist Medical Practitioners** in the next five years?


Please take into account factors that influence the actual adoption of technologies when providing your answer (i.e., the price of technologies; the design of the organisation, production processes and supply chains; legal constraints; and cultural expectations).

	Workers will not perform this task any longer	Workers will spend less time on this task	Workers will spend the same amount of time on this task	Workers will spend more time on this task	l don't know
(a) Performing surgery of a general nature					
(b) providing information to patients about preventive measures, treatment					

Database automation risks - Results

Database automation risks - Results

Integrates findings from:

- 1. Scenarios for the impact of intelligent automation on work (D1.2)
 - Thought experiment based on literature
 - 8 scenarios for impact of technology based on 3 key variables:
 1-speed of innovation, 2-speed of adoption, 3-impact on tasks.
- 2. Labour market forecasting scenario's for automation risks (D1.4)

https://technequality-project.eu/files/d71fd-policybrief1v20pdf

Scenarios for the Future of Work - Overview

		Variables shaping the impact of automation on work						
		speed of innovation		speed of	speed of adoption		impact on job tasks	
		gradual	boom	slow	fast	mostly augmenting	mostly substitution	
	scenario 1 acute disruption							
	scenario 2 incremental automation							
	scenario 3 delayed disruption							
	scenario 4 slow substitution							
	scenario 5 abrupt volatility							
	scenario 6 controlled adjustment							
	substitution							
Potential f	scenario 8 gradual substitution							

Integrates findings from:

- 1. Scenarios for the impact of intelligent automation on work (D1.2)
 - Thought experiment based on literature
 - 8 scenarios for impact of technology based on 3 key variables: 1-speed of innovation, 2-speed of adoption, 3-impact on tasks.
- 2. Labour market forecasting scenario's for automation risks (D1.4)
 - Econometric estimations (base: Cedefop Skills Forecast 2018)
 - 18 scenarios for number of jobs in 2030 based on 3 key variables:
 1-automation risk, 2-speed of adaptation, 3-barriers to adoption

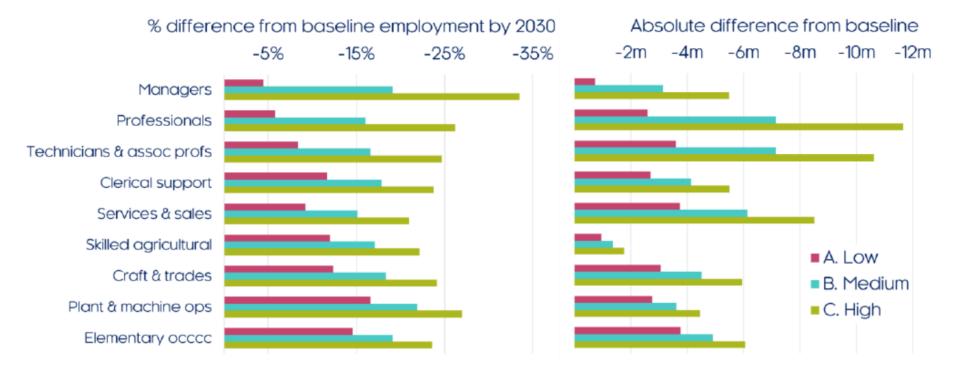
https://technequality-project.eu/files/d71fd-policybrief1v20pdf

Table 1: Scenario assumptions

Factor	Scenario assumptions
Automation risk to occupations	 High⁷ Medium Low
Speed of adoption of automating technologies	Linear trajectory. Full a doption by: 1. 2035 2. 2055 3. 2075
Economic and socio- political barriers to their adoption	 No employment protection. Employment protection

Source: Heald, Smith and Fouarge (2019)

Integrates findings from:


- 1. Scenarios for the impact of intelligent automation on work (D1.2)
 - Thought experiment based on literature
 - 8 scenarios for impact of technology based on 3 key variables: 1-speed of innovation, 2-speed of adoption, 3-impact on tasks.
- 2. Labour market forecasting scenario's for automation risks (D1.4)
 - Econometric estimations (base: Cedefop Skills Forecast 2018)
 - 18 scenarios for number of jobs in 2030 based on 3 key variables:
 1-automation risk, 2-speed of adaptation, 3-barriers to adoption
 - +3 scenarios for low/med/high automation risk, and speed of adoption depends on relative wages, EPL is regional barrier to adoption.

https://technequality-project.eu/files/d71fd-policybrief1v20pdf

Figure 1: Additional scenario results (% difference from baseline by 2030 in EU-28 employment by ISCO-08 occupation)

Total of 21 scenario's \rightarrow web app

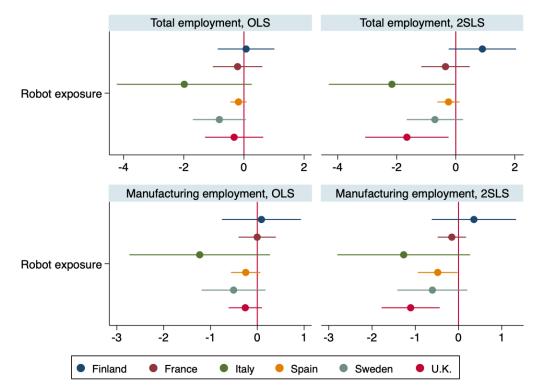
Employment composition differences under autonomy

Technequality

Select a country and industry sector to explore Country EU 28 Industry group All industries Select scenario assumption combinations **Technical Potential Time to Full Deployment** Main Restriction Low Mid High 2035 2055 2075 Free New Demand 260000 7 240000 220000 200000 **1280000 £**60000 140000 Ē20000 Ě00000 280000 960000 L40000 20000 0 2018 Baseline 2030 Baseline 2030 Automation scenario

1 Managers 2 Professionals 3 Tech and Assoc Prof 4 Cierical Support 5 Services and Sales 6 Skilled Agricultural 7 Craft and Trades 8 Plant and Machine Op 9 Elementary Occ

Understanding robot adoption in local labour markets D1.5


- Local market = at least NUTS3 level (but NUTS2 for France and Italy)
- 2007 is the main cut-off year to avoid the Great Recession shock.
- Empirical strategies: based on "Robot and Jobs: Evidence from US Labor Market" (Acemoglu & Restrepo, 2020)

Country	Long Diff.	Spatial unit	N. of obs.
Denmark	1994-2007	Municipality	99
Finland	1993-2007	Sub-region	70
France	1990-2006	NUTS2	22
Germany	1995-2007	District	402
Italy	2001-2011	NUTS2	19
Spain	1991-2011	NUTS3	52
Sweden	1993-2007	Local area	100
U.K.	1991-2007	Local authority district	352

The impacts of robot exposure

- The implementation of industrial robots has general displacement effects on local labour market though not significant across selective countries, except Finland
- More jobs lost in the manufacturing sector
- 2SLS estimates share similar pattern as baseline OLS results

Note: Regressed with demographic and industrial controls as well as regional fixed effects

Technequality

