Technequality

Understanding the relation between technological innovations and social inequality

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 822330 Technequality Policy week February 4, 2022

Maastricht University

Prof. Dr. Didier Fouarge (ROA, Maastricht University) Dr Cornelia-Madalina Suta (Cambridge Econometrics)

Outline

Labour market forecasting scenarios for automation risks

- Model of automation
- Scenario assumptions
- Results
- Policy recommendations
- Example of simulation results

Labour market forecasting scenarios for automation risks

Model of automation

Human tasks & Machine tasks

Technology can **complement** human tasks

Technology can **substitute** human tasks

Non-routine analytical/creative tasks Interactive tasks

ŮŮŮŮŮŮŮŮ

Routine cognitive Routine manual tasks

This project has received funding rom the European Union's Horizon 2020 research and innovation programme under grant agreement no. 822330

Changes the demand for human tasks & skills

What jobs/tasks are likely to be automated?

Automation will:

Create jobs

 \rightarrow Not quantified by us

lechnequality

- Destroy jobs →Our scenario analysis
- Change tasks/skills →Our survey on tasks within

- **1. Qualitative** scenarios for the impact of intelligent automation on work
 - Thought experiment based on literature
 - 8 qualitative scenarios for impact of technology based on 3 key variables:
 - 1-speed of innovation,
 - 2-speed of adoption,
 - 3-impact on tasks.

https://technequality-project.eu/files/d12fdscenariostudiesv20pdf

- 2. Quantitative labour market forecasting scenario's for automation risks
 - Econometric estimations
 - 18 scenarios for number of jobs in 2030 based on 3 key variables:
 - 1-automation risk,
 - 2-speed of adaptation,
 - 3-barriers to adoption.
 - We build on:
 - Cedefop Skills Forecast 2018
 - OECD automation risk data (Quintini & team)
 - We do not account for job creation

https://technequality-project.eu/files/d14fdmethodologyscenariodesignv20pdf

Labour market forecasting scenarios for automation risks

18 scenarios for number of jobs in 2030 based on 3 key variables – see table.

+3 scenarios for low/med/high automation risk, and 1-speed of adoption depends on relative wages, 2-employment protection legislation = regional barrier to adoption

Parameter	Description	Assumptions		
Automation risk (Technical potential)	OECD automation risk by occupation (three categories: high (>70%), significant (50-70%), and low (<50%)).	Low: lower bound in range		
		Middle: mid-point of range		
		High: upper bound in range		
Speed of adoption of automating technologies	The year in which full technical potential could be realised.	2035		
		2055		
		2075		
Economic and		No employment protection		
socio-political barriers	Restriction on automation.	Employment protection.		

Main scenario results

(% difference from Cedefop Skills forecast 2018 by 2030 in EU-28):

https://www.camecon.com/tools/labour-market-forecasting/

	No employment protection			Employment protection		
	2035	2055	2075	2035	2055	2075
High	-44%	-20%	-13%	-37%	-19%	-12%
Middle	-31%	-14%	-9%	-28%	-13%	-9%
Low	-18%	-8%	-5%	-17%	-8%	-5%

12.5 million to 106.6 million jobs lost by 2030

Scenario results (% difference from baseline by 2030 in EU-28 employment by ISCO-08 occupation)

Explore the data yourself using the interactive web app

Select a country and industry to explore

Labour market forecasting scenarios for automation risks

Recommendations for policy responses

- Flexibility and adaptability of policy responses
- Preparedness
- Moderated transitions, i.e. slow the pace of a rapid transition
- Target solutions
- Alertness to unintended consequences

https://technequality-project.eu/files/d71fd-policybrief1v20pdf

Example of targeted solution

Scenario	Scenario assumptions		
Baseline	16% of jobs in the Netherlands to be displaced by automation over 2021-30.		
Earnings disregard regime	Among the 16% displaced by automation, 14% of them manage to re-enter into full-time or part-time employment.		
	The rest will enter into social assistance in which people get a work bonus when they start to work or work more hours.		
	In each year, 15% of people on social assistance may keep 50% of the earnings from part-time work up to the maximum of 203 euros per month. When they find full-time work, they exit Social Assistance and keep 100% of their earnings.		
	Financing the social assistance:		
	 VAT increase; or Income tax increase 		

Example of targeted solution

NL GDP and employment - scenario results

Conclusion

- Automation will:
 - Destroy jobs
 - Create jobs
 - Change tasks/ skills
- Impact on jobs. We offer to policy makers:
 - Qualitative narrative to consider effects
 - Quantitative estimation by country, sector, occupation
 - Online tool to visualise 21 potential scenario's

Policy brief on scenario studies of impact of technological changes on jobs: <u>https://technequality-project.eu/projects/policy-briefs</u>

Combines findings from:

- **1. Qualitative** scenarios for the impact of intelligent automation on work
- **2. Quantitative** labour market forecasting scenario's for automation risks

Technequality

Understanding the relation between technological innovations and social inequality

Madalina Suta Cambridge Econometrics <u>cs@camecon.com</u>

Didier Fouarge Maastricht University <u>d.fouarge@maastrichtuniversity.nl</u>

